full screen
Home > Technology & Engineering > Energy technology & engineering > Electrical engineering > Power generation & distribution > Distributed Real-Time Architecture for Mixed-Criticality Systems
Distributed Real-Time Architecture for Mixed-Criticality Systems

Distributed Real-Time Architecture for Mixed-Criticality Systems


     0     
5
4
3
2
1



International Edition


About the Book

This book describes a cross-domain architecture and design tools for networked complex systems where application subsystems of different criticality coexist and interact on networked multi-core chips. The architecture leverages multi-core platforms for a hierarchical system perspective of mixed-criticality applications. This system perspective is realized by virtualization to establish security, safety and real-time performance. The impact further includes a reduction of time-to-market, decreased development, deployment and maintenance cost, and the exploitation of the economies of scale through cross-domain components and tools.

  • Describes an end-to-end architecture for hypervisor-level, chip-level, and cluster level.
  • Offers a solution for different types of resources including processors, on-chip communication, off-chip communication, and I/O.
  • Provides a cross-domain approach with examples for wind-power, health-care, and avionics.
  • Introduces hierarchical adaptation strategies for mixed-criticality systems
  • Provides modular verification and certification methods for the seamless integration of mixed-criticality systems.
  • Covers platform technologies, along with a methodology for the development process.
  • Presents an experimental evaluation of technological results in cooperation with industrial partners.

The information in this book will be extremely useful to industry leaders who design and manufacture products with distributed embedded systems in mixed-criticality use-cases. It will also benefit suppliers of embedded components or development tools used in this area. As an educational tool, this material can be used to teach students and working professionals in areas including embedded systems, computer networks, system architecture, dependability, real-time systems, and avionics, wind-power and health-care systems.


About the Author:

Hamidreza Ahmadian is a research assistant at the Chair for Embedded Systems of University of Siegen. He studied electrical engineering at University of Tehran. In 2012, Hamidreza Ahmadian finished his Master studies in Mechatronics at University of Siegen and started as a research assistant at Zentrum für SensorSysteme (ZESS) in the field of wireless sensor networks. Since August 2013, he has conducted research in the area of network-on-chips in mixed-criticality and dependable systems. In addition, he participated in the European projects DREAMS and SAFEPOWER in the field of time-triggered and event-triggered on-chip communication in safety-critical embedded systems.

Roman Obermaisser is full professor for Embedded Systems at the Department of Electrical Engineering and Computer Science of the University of Siegen in Germany. He studied computer sciences at Vienna University of Technology and received the Master's degree in 2001. In February 2004, Roman Obermaisser finished his doctoral studies in Computer Science with Prof. Hermann Kopetz at Vienna University of Technology as research advisor. In July 2009, Roman Obermaisser received the habilitation (Venia docendi) certificate for Technical Computer Science. Roman Obermaisser is the author of numerous journal papers, books, and conference publications. The research activities of Roman Obermaisser are tightly integrated into the international research in the area of embedded systems. He participated in European research projects (e.g. universAAL, DECOS, NextTTA, INDEXYS) and was the coordinator of the FP7 research projects GENESYS (GENeric Embedded SYStem Platform), ACROSS (Artemis Cross-Domain Architecture) and DREAMS (Distributed REal-time Architecture for Mixed criticality Systems).

Roman Obermaisser was also member of the working groups reference esigns/architectures and middleware/seamless connectivity in the European technology platform ARTEMIS, where a roadmap for European research in the area of embedded systems was defined. His leading role in the scientific community is shown through the chairing and participation in many program committees. The research of Roman Obermaisser focuses on system architectures, which provide the scientific and engineering foundation for the construction of embedded systems. The goals of his research are to discover design principles and to develop platform services that enable a component-based development of embedded systems in such a way that the ensuing systems can be built cost effectively and exhibit key non-functional properties (e.g. dependability, timeliness, composability, maintainability). The investigations of Roman Obermaisser have resulted in contributions ranging from conceptual models of component-based system architectures, to model-based development solutions, to distributed algorithms for fault-tolerance and embedded operating system technologies for safety-relevant applications.

Jon Perez is Head of the Dependable Embedded Systems Department at IK4-Ikerlan research center. He has worked for more than ten years in the development of safety-critical systems for different domains, such as railway signaling systems (SIL4 ERTMS/ETCS), machinery (SIL3/Pld) and wind turbine protection system (SIL3/Pld). He has previously worked for Motorola Semiconductor in the field of multicore DSPs. His research interests focus on dependable and safety-critical embedded systems. He has collaborated in multiple European research projects in this field, such as GENESYS, MULTIPARTES, PROXIMA, DREAMS, SAFEPOWER and SAFE4RAIL. He received a B. Eng in Industrial Electronics and Robotics at Mondragon University, a M.Sc. in Electronics & Electrical Engineering with distinction at the University of Glasgow and he finished his doctoral studies in Computer Science at TU Wien in the field of safety-critical embedded systems.


Best Sellers



Product Details
  • ISBN-13: 9781032338989
  • Publisher: Taylor & Francis
  • Publisher Imprint: CRC Press
  • Height: 254 mm
  • No of Pages: 524
  • Spine Width: 0 mm
  • Width: 178 mm
  • ISBN-10: 1032338989
  • Publisher Date: 13 Jun 2022
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 951 gr


Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Distributed Real-Time Architecture for Mixed-Criticality Systems
Taylor & Francis -
Distributed Real-Time Architecture for Mixed-Criticality Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Distributed Real-Time Architecture for Mixed-Criticality Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Booksbay (the "CRR Service").


    By submitting any content to Booksbay, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Booksbay (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Booksbay a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Booksbay may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Booksbay's sole discretion. Booksbay reserves the right to change, condense, withhold publication, remove or delete any content on Booksbay's website that Booksbay deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Booksbay does not guarantee that you will have any recourse through Booksbay to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Booksbay reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Booksbay, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Booksbay, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!